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ABSTRACT
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totic optimality properties and the convergence rates of the three empirical Bayes rules
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value of c varies depending on the empirical Bayes rule used.
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1. Introduction

We consider a decision problem involving n components as follows. Let rj,... ,r,,

denote n independent populations of the n components, respectively, where population

7i, is characterized by a parameter 0, i = 1,...,n. For the given decision problem,

let ai denote an action for the i-th component and let L(Oi,ai) be the corresponding

loss function. Thus, L'(O,a) = L(O,a,) is the total loss where 0 = (O,...,0,) and
i=l

a = (a,... ,an). Suppose that for each i = 1,... ,n, the parameter 0, is a realization

of a random variable Oi, whicha has a prior distribution Gi over the parameter space fl,.

Let Xi denote a random observation arising from population 7r with probability density

function fi(xl0i). Let di be a decision rule defined on the sample space Xi of Xi for the

i-th component problem. Then, under some regularity conditions, the total Bayes risk of

the decision rule d = (dl,... ,dn) is:

n

r(G,d) = Zr(Gi,d,) (1.1)
i= 1

where G = G x ... x G,, and

r,(G,,d,) =f f L(o, d,(x))f,(xIO)dxdG,(o)
fl. 1(1.2)

-IL, [I ,L(O, d,(x))dGi(OIx)] fi(x)dx

where Gi(OIx) is the posterior distribution of 1i giv .A; = x and fi(x) is the marginal

probability density function of Xi. Thus, for the i-th cou., onent problem, the Bayes rule

is the one which minimizes fa, L(8, di(x))dGi(Ojx) among the class of decision rules for

the i-th component decision problem. The overall minimum Bayes risk is

r(q,4B)= ,i,(G,,d,B)
i=1

where dB = (dlB,...,d,B) and diB is a Bayes rule for the i-th component decision

problem, i = 1,...,n.

When the prior distributions Gi, i = 1,...,n, are unknown, the Bayes rule cannot

be applied. However, in many situations, the n-component decision problems may share
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the same or similar properties. When this occurs, one may incorporate all the information

obtained from different sources and make an appropriate decision for each of the n com-

ponents. This i ca is analogous to the empirical Bayes approach of Robbins (1956,1964).

Thus, in the following, we let di denote a decision rule for the i-th component problem,

where di is now defined on the sample space X = X, x ... x X,, of X = (X.... , Xn); also,

denote di(x1,. . . ,x,) by di(xi x(i)) where x(i) = (x,.. .,xi 1 , I ,. ..i,+xn). Then,

ri(Gi, di) = Ej [J, L(O, di(xX(i))f(xO)dxdGj(O)]

where the expectation Ei is taken with respect to the marginal distribution of X(i) =

(Xi,... ,Xi-,Xi+,. .. ,Xn). Since ri(Gi,diB) is the minimum Bayes risk for the i-th

component problem, ri(Gi,di) - rt(Gi,diB) _ 0 for each i = 1,...,n, and therefore,
n

r(G,d) - r(G,d ) Z[ri(Gi,di) - ri(Gi,diB)] 0.
i=1

In certain compound decision problems, the average [r(G,d)- r(G, dB)] has been

used as a measure of the performance of the decision rule d. The asymptotic behavior

of Ir(Gd) - r(G, dB)i has been investigated extensively; for example, see Vardeman

(1978,1980), Gilliland and Hannan (1986) and Gilliland, Hannan and Huang (1976), among

others. Many of the results indicate that -[r(G,d) - r(G,dB)] tends to 0 as n tends

to infinity. However, so far as we know, the asymptotic behavior of the regret value

r(G, d) -r(G,dB) has not been investigated since it seems that r(G, d) -r(G, dB) might tend

to infinity when n tends to infinity. Very surprisingly, we find that in certain compound

empirical Bayes decision problems. r(9, d) - r(G, dB) -- 0 as n -- oo. This result indicates

the advantage of incorporating all the information from different sources for making a

decision for each of the n component problems.

In this paper, we investigate the asymptotic optimality properties of certain empirical

Bayes procedures for simultaneous testing problems. The regret value r(G, d) - r(G, d)

is used as a measure of the performance of the decision rule d. The general framework

of the empirical Bayes decision problems under study is formulated in Section 2. Then,

examples are given and used to illustrate how to incorporate information from different

sources. For each of them, the corresponding convergence rate is investigated.
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2. Formulation of the Empirical Bayes Decision Problem

Let 7r1 ,.. ., r, denote n independent populations. For each i = 1,... ,n, population

rn is characterized by a parameter 0. Let 00 denote a standard or a control. The problem

of selecting populations with respect to a control has been extensively studied in the liter-

ature. Dunnett (1955) and Gupta and Sobel (1958) have considered problems of slecting

a subset containing all populations better than a control using some natural procedures.

Lehmann (1961) and Spjotvoll (1972) have treated the problem using methods from the

theory of testing hypotheses. Randles and Hollander (1971), Gupta and Kim (1980), Mi-

escke (1981) and Gupta and Miescke (1985) have derived optimal procedures via minimax

or gamma-minimax approaches. The reader is referred to Gupta and Panchapakesan

(1979,1985) for an overview of this research area. In this paper, we study the problem of

selecting good populations from among n populations using the empirical Bayes approach.

For each i = ,... , n, let Xi denote a random observation arising from population 7ri

with probability density function f(x01). The observation Xi may be thought of as the

value of a sufficient statistic for the parameter 0i based on several iid observations taken

from ri. Let 0o be a known constant. This 00 can be used as a standard level to evaluate

each of the n populations. Population ri is said to be good if 0 00, and bad otherwise.

Our goal is to select all the good populations and exclude all the bad populations.

Let 01 = {1 = (01,... , ,)lf( X10i) is well-defined, i = 1,... ,n} be the parameter space

and let A = {a = (a,,..., an)jai = 0, 1,i = 1,... ,n} be the action space. When action a is

taken, it means that population 7ri is selected as a good population if ai = 1, and excluded

as a bad one if ai = 0. For each 0 E f] and a E A, the loss function L(-, a) is defined to be:

n n

L(g-,a) = ai (6o - 0)I(Oo - 0,) + Z(1 - a,)(Oi - Oo)I(Oi - 8o) (2.1)
i=1 i=1

where I(x) = 1(0) if x > (<)0.

It is assumed that for each i, the parameter 0i is a realization of a random variable

0i. It is also assumed that the n random variables 0i, i = 1,...,n, are independently

distributed with a common but unknown prior distribution G. Thus, 0 = (0 1,... ,E))
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nI

has a joint prior distribution G(q) = f- G(Oi) over the parameter space fl. Under the
i=1

preceding assumptions, X1,..., Xn are iid with the marginal probability density function

f(x) = f f(x1O)dG(O).

For each i = 1,...,n, let Xi be the sample space of Xi, and let X = X1 × ... X Xn.

Let X = (X 1 ... ,X,) and let x = (X1,...,Xn) be the observed value of X. A selection

rule d = (dl,... ,dn) is defined to be a mapping from X into [0, 1]k such that d1(z) is the

probability of selecting 7ri as a good population given X = x. Let D be the class of all

selection rules, and let r(G, d) denote the Bayes risk associated with each d E D. Then,

r(G) = inf r(G, d) is the minimum Bayes risk.
dED

The Bayes risk associated with any rule d E D can be rewritten as

n

r(G,d) = Zr(G, di) (2.2)

where
k

ri(G, di) = - -Idi f (xy) dx + C (2.3)
3=1

where pi(xi) = E[fieX i = xi] = f Of(xiJO)dG(O)/f(xi), the posterior mean of E, given

Xi = xi, and C = f , f"(0 - o) f(x10)dG(0)dx.

Since the value C is independent of the selection rule d, from (2.3), a Bayes rule, say

4B = (dIB,. .. ,dB) is clearly given by

( 1 if V'i(xi) > 00, (2.4)
= 1 = 0 otherwise,

and the minimum Bayes risk is: r(G) = ri(G,diB)

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule

4B for the selection problem at hand. However, the selection problem under study can be

viewed as that in which we are dealing with a Bayes decision problem having n compo-

nents with a common unknown prior distribution. Thus, the empirical Bayes approach of

Robbins (1956,1964) can be employed here. We use all the observations obtained from the

n populations to form a decision for each of the n-component problems.
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Let pi(xiz(i)) be an estimator of oi(xi) based on (xj,... ,x,) where x(i) =

(X,, Xi-liXi+l,..., iXn). We then define a selection rule d, = (dl,, dnn) as follows:

d(i(i)) = din() { I if in(Xi(i)) > 00, (2.5)
0 otherwise.

The associated Bayes risk of the selection rule dn is:

Pt

r(G,dn) = r,(G,din) (2.6)
i=l

where

ri(G, din) = Ei [f [Oo - pi (i)din (xiIX(i))f(xi)dxi + C (2.7)

where the expectation Ei is taken with respect to X(i). Recall that ri(G,diB) is the

minimum Bayes risk for the i-th component problem. Thus, ri(G, din) - ri(G, diB) _ 0

and therefore, r(G, d) - r(G) > 0. For the empirical Bayes selection rule dn to be useful,

we always desire that the average nonnegative difference (r(G, d) - r(G))/n or the total

nonnegative difference r(G, d) - r(G) be small.

Definition 2.1

(a) A decision rule d is said to be weakly asymptotically optimal relative to the (un-

known) prior G if (r(G,d,) - r(G))/n -+ 0 as n -+ 0o.

(b) A decision rule d is said to be strongly asymptotically optimal relative to the (un-

known) prior G if r(G, d) - r(G) -+ 0 as n --* 0o.

Clearly, for a selection rule d,, the strong asymptotic optimality implies the weak

asymptotic optimality. The weak asymptotic optimality of compound decision rules has

been studied in the literature by many authors, notably Vardeman (1978,1980), Gilliland

and Hannan (1986), and Gilliland, Hannan and Huang (1976), though the formulation of

their compound decision problems are different from the one we consider here. However,

very surprisingly, it seems that the strong asymptotic optimality has not been investigated

so far. In the following, we consider the problem of selecting good Poisson populations, and

use this as an example to illustrate how to incorporate information from different sources
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for making decisions. Selection rules are constructed according to how much we know

about the prior distribution G. The strong asymptotic optimality of the selection rules is

investigated. The associated convergence rates of selection rules are also established.

3. Selecting Good Poisson Populations

It is assumed that for each i = 1,...,n, the random observation Xi arises from

a Poisson population with mean 0i. That is, f(xili) = e- ' '/(xi!), x= 0,1,2.

Then, f(xi) foe-°O0'/(x!)dG(O) = a(xi)h(xi), where a(xi) = 1/x! and h(xi) =

fo e0 0-O'dG(O), and i(xi) = h(xi+1)/h(xi) = p(xi). Let 0o >0 be the known standard

level. The Bayes rule dB = (dlB,... ,dB) for this problem is:

diB) = 1 if o(xi) 0O0,
f 0 otherwise.

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule

4B here. Therefore, in the following, empirical Bayes rules are constructed according to

how much information we have about the prior distribution G.

3.1. A Nonparametric Empirical Bayes Rule

First, it is assumed that the prior distribution G is completely unknown. Thus, the

nonparametric empirical Bayes approach is employed. Note that the Bayes rule dB is

a monotone rule. That is, for each i = 1,...,n,diB(x) is nondecreasing in xi when all

the other variables are kept fixed. This follows from the increasing property of Pi(xi)

which can be verified by noting that f(xjIO) has the monotone likelihood ratio. Thus, it is

desirable that the considered empirical Bayes rules be monotone.

For each i =1,..., n, let Ni,, = max X i - 1. For each xi 0, 1,..., N, + 1, let

fnx = nl EZI{,}i)(Xi), (3.1)
_ 1

-o

= f,()/a(x)(3.,)
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Since it is possible that hin(xi) may be equal to 0, we define

oin(xi) = [hi.(xi + 1) + 6.]/[hin(zi) + 5n], (3.3)

where 5n > 0 is such that 5n = o(1).

It is intuitive to use Pin(xi) as an estimator of voi(xi) and one may obtain an em-

pirical Bayes rule as follows: Select 7ri as a good population if oin(x) > 00, and ex-

clude 7ri as a bad one otherwise. However, this selection rule is not monotone since

oin(xi) may not possess the increasing property. Thus, we consider a smoothed version

of Poin(xi). Let {o (z)} 0 be the isotonic regression of {cPon(xi)}z,=o with random

weights {Win(xi) X=o where Win(xi) = [hin(xi) + 6.]a(xi + 1). For y > Nin, define

Pin(y) = Pc,,(Nin). Therefore, p* (xi) is nondecreasing in xi, x = 0, 1,2, . We use

p (xi) to estimate poi(xi) and propose an empirical Bayes rule d* = (dxn,... ,dn) as

follows: For each i = 1,...

•1 if P*.(zi) 00,

d"(Czijz(i)) din(z) - 0 otherwise. (3.4)

The performance of the preceding nonparametric empirical Bayes procedure will be

discussed in Section 4.

3.2. A Parametric Empirical Bayes Rule

Here we assume that the prior distribution G is a member of gamma distribution

family with unknown shape and scale parameters k and P, respectively. That is, G has a

density function g(OIk,13), where

g(Olk, 3) = #kok-le-00/r(k), 9 > 0.

Then, X,... ,Xn are iid with marginal probability function f(x) = F(z + k)3k/[I(k)(1 +

)z+Azx!], x = 0, 1,2,.... Also, pi(x) = (z + k)/(1 + S). A straight computation yields

E1 = E[X,] = k/13, '2 - E[Xj] = (k + 1)k/,02 + k/fl. Thus, 0 = A1/(s2 - 2 - s) and

k = ;4 /(,s 2 - - M2). Therefore, pi(z) = [z(M2 - Mi -_ A) + ,2]/(;&2 - A2).

8



n nFor each i 1,... ,n, let t1, ()(i) - X 2. That is,
j=l n- l

• i;oi jii

An(i) and Ai2 ,(i) are moment estimators of gi and AL2 , respectively, based on X(i). Note

that it is possible that g2n(i) - n(i)- pin(i) _< 0 though A 2 - - > 0. Now, for

each i = 1,...,n and x, = 0,1,2,..., define

,[u,, (i)- /AIn(i)-_ I2,n(i)] u (, If +t ,, i -A nt , i -ii) >
'3in (xj) if A,,i)..ni in3.5

xi 
otherwise.

We then propose an empirical Bayes rule an (dln,. . . ,dn,) as follows:

din(T) 1 if Oi,(xi) _ 00, (3.6)

0 otherwise.

3.3. A Hierarchical Empirical Bayes Rule

Now, it is assumed that the prior distribution G is a gamma distribution with a known

shape parameter k and an unknown scale parameter 3. In this situation, the preceding

parametric empirical Bayes approach can be applied here. However, since our purpose is

to introduce the methods to incorporate data from different sources, a new method, called

as hierarchical empirical Bayes, is used in the following.

Since 0 is a scale parameter, we assume that 3 has an improper prior h(3) >, 3>

0. Thus, conditional on 3, Xl,...,X,, are iid with the probability function f(xlo)
fo 00 [~(~k d- r(x+k)OA:0' ~xO~(Ok,~d =zir(k)(l+,O)-+W, x = 0, 1, 2, ... Therefore, (Xi,, Xn) has a joint

marginal probability function I'(x1,..., x,) where

f, ,... - jJ-f z13, l)()d13= __[(;+) 0° .-
= i, .,=oo)n n [Fr(z3 +k) ] (1+ )b do, where

n

b nk+ Ez x. Thus, the posterior density function of 3 given (Xi,... ,X,) = (z 1 ,... , X,)
j=l

is

h(131z,. .,X ) = f( 10).. .f ,,z/3)h(,3)
I(Xi,,...,9 X)

ok-I rfo( ik-I 1]

1 +T +,



and the posterior mean of 3 given (X1,...,X,) = (xI,. .. ,xn) is

nk if E x i > 2,

Xj'- 1 j=7
O n = E [ , , z, ] =n j= ,

n

00 if 1' xj < 1.
j=1

Now, for each i =1.,n, and xi = 0, 1, 2,... define

( i+ k)1(1 + On if E xj> 2,
= n(=') (3.7)

0 if E xj < 1.

We then give an empirical Bayes rule dn = (d1n,... , d,) as follows:

dn(xijx(i)) di(-) {1 if ;in(xi) _ 00, (3.8)
d0 otherwise.

4. Asymptotic Optimality of the Proposed Empirical Bayes Rules

In this section, we investigate the asymptotic optimality of the proposed empirical

Bayes rules.

Let A(Oo) = {zIp(x) > Oo} and B(Oo) = {xlo(z) < o}. Define

M = "min A(Oo) if A(Oo) # ,
M= o otherwise,

maxB(0) if B() 5(4.2)
-1 otherwise,

where 0 denotes the empty set.

By the increasing property of po(x) in the variable x, m < M; also m < M if A(8o) $ .

Furthermore, x < m iff (x) < 0o and y > M iff (y) > 0o. In the following, we

consider only those priors G such that f0 OdG(O) < oo and m < oo. Note that the

preceding requirements are always met if the prior distribution G is a member of gamma

distribution family. Let d, = (d1n,... , dn) be any of the three proposed empirical Bayes

rules and let (j,(xj ),..., ,,,(x,)) be the corresponding empirical Bayes estimators. By
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the definitions of pn(z1 ), ^in(xi) and 7n(z,), pn(z,) is increasing in zi when all the

other variables xj, j :A i, are kept fixed. Thus, for each i = 1,...,n,

0 < ri(G, din) - ri(G, diB)
m 00

= 00 [o-()]P{ in(X 0f(Xi) + Y, [o(xi) - OolP{Pin(z) < Oo}f(Xi)
zi =0 zi =M

m 00

S [00 o-P(zi)]P{Pin(M) _ 0o}f(Xi) + E [(xi) - OoJP{Pin(M) < Oo}f(xi)
Zi=O zi =M

= blP{oin(m) > Oo} + b2P{Pin(M) < 0o}. (4.3)

In (4.3), the probability measure P is computed with respect to X(i). Also, 0 < b, = E
z=0

00

[O0 - cp(x)]f(z) < oo, 0 < b2 = E [p(x) - Oolf(z) < oo. The finiteness of both bi and
z=M

b2 is guaranteed by the assumption that fo OdQ(O) < oo.

From (4.3), we obtain:

0 < r(G,d ) - r(G)
n

= [ri(G, din) - r,'(G,diB)]i~l (4.4)

n

< Z[biP{Pin(m) _ 0o} + b2P{cPin(M) < 00}].
i=1

Therefore, it suffices to consider the asymptotic behavior of P{ in(m) 8 0 }

and P{in(M) < 0o}.

4.1 Asymptotic Optimality of dn*

We first present some useful results.

y
For each i .. ,n and y = 0,1,... ,Nin let Pin(y) = in(X)Win(), y) =

Z=0
y Y

oL . (z)Win() -m Iin (y)= L Win(z) where Win(W), z = 0,1,..., Nin, are the ran-
Z--- z=O
dom weights Q,!fiied in Section 3. From Barlow, et al. (1972),

T'in(Y) <- *in (Y) for all y = 0,1,... ,Nin. (4.5)

11



From Puri and Singh (1988), the isotonic regression estimators op,(z), x = 0, 1, ... Nin,

can be rewritten as:

min In P(Y) - hn(x - 1)]

where TI,1(-1) = Hi,(-1) = 0. Thus, from (4.5) and (4.6),

mi() kin - 1)]
<O__,n (x),(y mi I.( X) 0 = , 1,...Nin, (4.7)

X< [HLin(Y) - H .x- 1)1 (47

where *in(-1) 0.

The following Lemma is taken from Liang (1989).

Lemma 4.1. Let {am} be a sequence of real numbers and let {bm} be a sequence of positive

numbers such that bm < 1 and bm is nonincreasing in m. Then, for each positive constant

C,
n n

sup 1: ambm ! (>)c =*- sup Eam (>)c.
n>1 m=1 n> m=

Y f X ~~) Y

Lemma 4.2. Define a function Q(y) = Oo E f(z)a(z+) - f(x + 1) on the set {yly =
z---M X=M

M,M + 1,.. .}. Then, Q(y) is a decreasing function of y. Hence max Q(y) = Q(M) =
Y> M

f(M) M) Ev ° -- _P(M)] < 0.

Proof: Q(y + 1) - Q(y) = f(y + 1) a (y + 2 ) [0 _ P(y + 1)] < 0 since y + 1 > M and thus

p(y + 1) _ o(M) > 0 o. Thus, Q(y) is a decreasing function of y which leads to the result

of this lemma.

Theorem 4.3. P(o ,(M) < Oo} _ O(exp(-rn))

where r, = min(2(Q(M)max(1,0-')/8) 2 , ln[F(M)]- 1 ) > 0.

Proof: P{wo,(M) < Oo}

= P{ o* (M) < 0 , Nin < M} + P{W (M) < O0 , Ni > M). (4.8)

Now,

P{in(M) <G0 , N,,t <M} [F(M)]' - = O(exp(-nln[F(M)]-')), (4.9)
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where F(.) is the marginal distribution of Xi, and the inequality is obtained by the defi-

nition of N,,.

Also, from (3.1)-(3.3), (4.7), Lemma 4.2, and by the definitions of i,,(y) and H,,(y),

straightforward computation yields the following:

E p - (M) < O0, N, > M)

C {i,(Y) - -,,(M 1) < Go[Hin(y) - Hi,(M - 1)] for some y, M < y -_5 Nin}
Y Y a(x +1) Y

C L[fi,t(x+1)-f (x-+ Z0Fn(x f(x) a(x) < (Oo- 1)6n L a(x+1)
z=M X=M X=M

+ Q(M) for some y > M}

-El. (4.10)
00

Since a(x) 0 for all x = 0,1,..., E a(x) < oo and 6, = o(1), then, for sufficiently
X=O

y
large n, (0o - 1)6,, L a(x + 1) + Q(M) < Q(M)/2 < 0 for all y _> M. Note that

z7M
a(x + 1)/a(x) = (x + 1)- 1, which is positive, bounded above by 1, and decreasing in z for

x = 0, 1, 2,.... By the preceding facts and Lemma 4.1, we obtain:

Y'f Q(M) Y xa( + 1) Q(M) '
E, C U I L fn(X +1) - f(x +1)] > 4 or L[fdr(X ) a(x) > 48oY>M Z=M 4 4M

C U [f,,(x +l)-f( +1)1 - Q(M) o-fY- Q(M)
4 o [fin> 40

y>M z=M z----M

{ jsupIFin(y) -F(y)j > -Q(M)max(1,Oo')/8} (4.11)

where Fin(y) is the empirical distribution based on X(i).

From (4.10) and (4.11), we obtain

P{wo!,(M) < 0o, Ni. > MI

"_ P{sup IFin(y) - r(y) I > -Q(M) max(1, 00 )/8} (4.12)

V>o

< dexp{-2n(Q(M) max(1, 0o)/8)2 }

where the last inequality follows from Lemma 2.1 of Schuster (1969).
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Now, let r, = min(2(Q(M) max(1,o)/8)2 , ln[F(M)]-'). Clearly r, > 0. Combining

(4.8), (4.9) and (4.12) gives the result of this theorem.

Theorem 4.4. P{Oi,(m) > 0o} < O(exp(-r2n))

where r2 = [R*(m) min(1, 0o)]2/8 > 0 and R*(m) is defined below.

Proof: From (3.1)-(3.3) and by the definition of o*,(m),

{p*(m) _> 0o}

C{Pin (X) > 0o for some 0 < x < m} (4.13)

C{a(x)Ain(x t 1) - Ooa(x 4- 1)Ain(x) > R(x) - a(x)a(z + 1)6n[l - 0o1 for some 0 < x < ml,

where Ain(x) = fi,(x)-f (x), R(x) = -a(x)f(x+l)+Ooa(x+l)f(z) = a(x+)f(x)[-P(z)+

00] > 0 since 00 - p(z) > 00 - (m) > 0, by the definition of m and the fact that

0 < x < m. Thus, R*(m) = min R(z) > 0 and therefore, for sufficiently large n,
O<x<m

R(x) - a(z)a(x + 1)6[1 - 0] _ RS(m)/2 since 6b = o(1). Therefore, from (4.13) and by

Theorem 1 of Hoeffding (1963),

P{W;(m) __ 0o}
m

< E[P{A/i(x + 1) > R*(m)/(4a(x))} + P{Ain(x) < -R*(m)/(40oa(x + 1))}]
Z =0

S[c exp{-2n[R*(m)/(4a(x)) 12 } + c exp{-2n[R* (m)/(40oa(x + 1))]21}1
z=0

=o(exp(-r 2 n)).

Based on the preceding discussions, we have the following result.

Theorem 4.5. Assume that the prior distribution G is such that fo OdG(O) < oo and

m < oo. Then, for the empirical Bayes rule d,, 0 < r(G,d,)-r(G) < O(exp(-Tn + Inn))

where r = min(ri,r2) > 0.

Proof: By (4.4), Theorem 4.3 and Theorem 4.4, we have

0 < r(G,d*) - r(G) < O(nexp(-Tn))

= O(exp(-rn + Inn)).

14



4.2. Asymptotic Optimality of d,

We let M, (t) and M2 (t) denote the moment generating functions of X 1 and XI,

respectively. For each real value a, define

ml(a) = inf eatMI(t)
t

m 2(a) = inf etM 2(t)
t

where the infimum is taken with respect to real values of t.

Lemma 4.6. For any positive constant c,

0 < mi(ILi + c) < 1, 0 < mj(juj - c) < 1 for i = 1,2,

where tA1 = E[X 1] and 142 = E[XI].

Proof: For the fixed real value a, consider the func.ion

Sl(t) = e-atM(t) = E[et(Xj-a)].

We have
S(')(t) = E(X, - a)et(X'-)],

I= EtCX 1

where S() (t) denotes the j-th derivative of S, (t) with respect to t.

Since S(2)(t) > 0 for all t, SI(t) is a convex function. Also, S~1)(o) = E[X - a] <

(=,>)0 iff 141 < (=,>)a. Thus, as j/s < a, S 1)(0) < 0, which implies that Sl(t) is

strictly decreasing in a neighborhood of point zero. Also, S1 (0) = 1. Therefore, m1 (a) < 1

if il < a. Similarly, we can also obtain the following result: ml(a) < 1 if IL, > a.

Now, by the definition, mi(a) > 0. These results yields that 0 < ml(ul + c) < 1 and

0 < rn (A, - c) < 1 for any positive constant c.

The results that 0 < m2 (A2 + c) < 1 and 0 < m 2 (A2 - c) < 1 for any positive constant

c follow from similar arguments.

Lemma 4.1. For each i = 1,... ,n, let Afln(i) and t2n(i) be the moment estimators of jul

and I2, respectively, which are defined in Section 3. Then, for any positive constant c,

15



(a) P{< _(i)- -c} < [m(1 - c)]"- 1,

(b) P{Al.C(i) - Al > c} < [m1ijAi + c)]"q ,

(C) P{2n(i) - A2 < -C} < [m2(A 2 -_ C)]-- and

(d) P{2.(i) - A2 > c} < [m2(A 2 + )]-q'.

Proof: This lemma is a direct application of Chernoff (1952). The proof can be completed

by noting the fact that 0 < E[X] < 00 and 0 < E[X21 < 00.

Let A =A2 -A - 2. Thus, u > 0, see Section 3. Define A = max(m 2 (A2 -

rn1(ji + ), mI(IL1 + 9-), m1(2,1i)). By Lemma 4.6, 0 < A < 1.

Lemma 4.8. P{A2,(i) - Aln(i) - s2(i) < 0} _ O(exp(-an))

wherea lnA if A>0,
00 ifA =0.

Proof: P{112n(i) - in((') - p(i) < 0}

=f P[A2n(i) - Aln(i) _ A.(i)]- [A 2 _ Al _ A2] <

< P A 2n(i) - A2 <_ - - 3  + P j ln(i)- _4 >!

+ I4(i) - 3

By Lemma 4.7,

P{,.s2 n () - A 2 <-±} M2 (A2 n- i

P {iiin(i) - jIs > [Mn1 (14 + n-1f 1, and

= {4,(i) - u > -±, p1,.(i) < 21si + P {, .(i) -1.4 > -, usi,(i) _ 21.si
3 3

< P {/Ain(i) - Al A } + P{ln(i) - Al i> 1} (4.14)

n-i

< m (A, + 11 )] + [ml(21 In)]-l.

Combining the preceding results, the lemma follows.

Theorem 4.9. P{Oin(M) < o} _< O(exp(-a 2 n)) for some positive constant a2.
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Proof: P{Oi,,(M) < 0o} = P{@i(M) < 0o, ,A.W(i) - AI.,(i) - A,(i) _ O}

+P{Oi,(M) < 00, 92n(i) - - 1 (i) > 0), (4.15)

where
P{i.(M) < 0 o, A&,.(i) - As1.(i) - ,4.(i) :_ O}

(4.16)

< O(exp(-aIn)) by Lemma 4.8.

Now, let q(M) = U(A2- I- sA) + A2 - 8o(/, - A). By definition of M, q(M) > 0.

Thus,

P{O,.(M) < 0 o, ,.2 (i) - Aln(i) -i(') > o}

!_PI( - 0o)142.(i) - MUl,,(i) - (M - 1 - 00)/j1.(i) < O}

-PI(M - 00)( 1.2n(i) - U2) - M(Aln(i) - i) -(m- 1 - i0o)( (/) - #.t) < -q(m)}

< P { (M - 00) (A.2n (i) -,4s2) < -q(MfI) } + P {M(IAli,-(i) - pI) > q(M) }(4.17)
+ (M -1-_ 00)(s(I2 t,2) > 9(M)

1ni 3J
By Lemma 4.7,

P-M(sn(i)-'A)> q(M) 1__ [mI (I + 3M)] n-I (4.18)

'If' 3(M-80)f -0>0
M(M) n-1P M - eo)(i#,2 (i) - 1s,) < j < 0 if M -8Oo=0,

IM2 [m 2 + 3(8,-M))] if M-0o < 0,

(4.19)

and analogous to (4.14),

p (M  l00 ) ( 2 > q(M)

gfM) n- I

fImi (141 + q(--0)&~ + [m i(2 1 ) In if M - 1- 00 > 0, (4.20)
< 0 if M -1- 0o =0,

mI IA + (M ) if M - - Oo < 0.

Combining (4.15)-(4.20), and by Lemma 4.6, it follows that there exists a positive

constant, say a 2 , such that P{in,(M) < o} -_ O(exp(-a2n)).
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Theorem 4.10. P{pin(M) > 0} <_ O(exp(-a 3 n)) for some positive constant a 3 .

Proof: The proof is analogous to that of Theorem 4.9. We omit the detail here.

The following theorem is a direct result of (4.4) and Theorems 4.9 and 4.10.

Theorem 4.11. Let dn be the empirical Bayes rule defined in Section 3. Assume that the

prior distribution G is a member of the gamma distribution family. Then,

0 < r (G, n) - r(G) O(exp(-an + In n)),

where a = min(a 2 , a3) > 0.

4.3. Asymptotic Optimality of ",.

Theorem 4.12. Let d, be the empirical Bayes rule defined in Section 3. Assume that the

prior distribution G is a member of gamma distribution family r(k,3), where k is a known

positive constant. Then,

0 < r(G,4) - r(G) < O(exp(--yn + Inn))

for some positive constant -y.

Note that the statistical model considered here is simpler than that of Section 4.2.

Thus, the proof for Theorem 4.12 is analogous to and simpler than that for Theorem 4.11.

We omit the detail here.
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